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II.  Group Characters and Algebra.
By D. E. LittLEwoop and A. R. RicuarRDsoN, University College, Swansea.

Communicated by H. W. TurnBULL, F.R.S.

(Received March 7—Revised December 12, 1933—Read January 18, 1934.)

§ 1. INTRODUCTION.

It has been known for some time* that the elements of a matrix of degree » may be
arranged in sets which correspond to cycles of the symmetric group of order = !, and
that there are relations connecting permanents and determinants, e.g.,}

+ 8+ + + R + o+ N 7 * By d 8 5
[+4 <4 o [+4 o
Govs)—= (a0 + =R s) —=(Eya)+ GEls)=0 ®
Further, MacManon and Brroscar have pointed out the close analogy which exists
between the threefold algebra of the symmetric functions a,, %, and s,, and the theory
of determinants, permanents, and the cycles of substitutions of the symmetric group.
Here we trace the analogy to its source by fixing attention on the characters of the
irreducible representations of the symmetric group of linear substitutions, as the centre
of the whole theory. By this means divers theories of combinatory analysis and algebra
are seen to be merely different aspects of the same theory. For the symmetric group
of order n ! the characters are all integers, and we associate with each partition of n
both a character of the group and a cycle of substitutions. When substitutions affecting
the rows (or columns) are applied to the diagonal term of the matrix of degree n we
notice that the determinant corresponds to the partition 17, whilst the permanent
corresponds to the partition #. Qur new functions, termed “mmanants} are defined to
correspond to the other partitions of #, and so fill the gap between the permanent and
determinant. When this is done it is seen that many relations, including (1), which
connect permanent and determinant can be found, and that there is a theory of
vmmanants which includes the theory of determinants as a very special case. From
such a wide choice of subjects we select that of the use of immanants in the calculation
of group characters themselves. Although the subject-matter discussed is thus restricted

* MacMaxon, ‘J. Lond. Math. Soc.,” p. 273 (1922).
T Muir, ““ Theory of Determinants > vol. 4, p. 459.
1 A name suggested to us by Professor A. R. Forsvrs, F.R.S.

VOL. CCXXXIIT.—A 722 (Price 5s. 6d.) o) [Published May 19, 1934.
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100 D. E. LITTLEWOOD AND A. R. RICHARDSON ON

it becomes clear that most, if not all existing tables of symmetric functions in com-
binatory analysis may be replaced by the tables of characters. Tables of characters of
the symmetric groups up to order 9! are to be found on p. 137 et seq.

§2. IMMANANTS OF A MATRIX.

Let Py =-a,,,, ... @, be the product formed from the elements of the matrix
[@.], in which @, is the number in the sth row and ¢th column, by operating on the
second suffixes of the diagonal element a; @y, ... @,, by the substitution S of the
symmetric group. Further, let x*® be the character of the symmetric group which
corresponds to the partition* (A) of », namely,

n = ;\1+ }\2—}‘..."1“ )\F’(7\12 )\22 ...Z ;\’L).

0l = 3 5 (874) Py

The number

is termed the I'mmanant of the matrix [a,] corresponding to the partition (2).

The permanent and determinant are special cases of immanants, for there is a set
of characters, corresponding to the partition # = n, that takes the value - 1 for every
operation, and a set of characters corresponding to the partition n=1-+1+1...
-+ 1 = 17, which takes the value -+ 1 for operations of the alternating group and — 1
for the other operations.

Hence

+ o+
|@a|® = |a|
|| = |a]-

Thus the three immanants of the matrix of order 9 are the permanent |a,|®, the
determinant |a,|"” and

1astl(21) = 2011099033 — G12023%31 — ;3091 032-

Matrices of order 16, 25 and 36 have respectively 5, 7 and 11 immanants.

It is important to notice that the determinant is the only immanant which is invariant
for a general transformation of the matrix, but an immanant is imvariant if the matriz
is transformed by any permutation matriz, that is by a matrix in which all the elements in
some Py are unity and the other elements zero.

In symbols, if A is a permutation matrix

|B|® = |A~1BA|™.
The effect of transformation by a permutation matrix is to replace each product Py

#* The association between the partition of » and the character is dealt with in § 3.
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GROUP CHARACTERS AND ALGEBRA. 101

by the product Prsy, where T is the permutation corresponding to' the permutation
matrix.
Since
1™ (T78T) = ¢ (8),

the immanant is unchanged.

§ 3. TuE CALCULATION OoF THE CHARACTERS OF THE SYMMETRIC GROUPS.

The chief methods are due to FroBenius* and BurNsiDE,T and are laborious.
FroBENIUS’ formula is quoted here for reference.

Let S be an operation of the symmetric group on n symbols, and let it contain «,
cycles on one symbol, «, cycles on two symbols and so on. Hence

n = oy + 2“2 + 3“3 + ceee

Then the numbers «;, «y, 3, ... define the class p to which S belongs, and the coefficient
of &+ &,y ... 2, in the product

(@ + @g oo F @) (22 + 22 oo+ 22 (23 e 2 3) A (2, X, e, T)

1s the character of S in an irreducible representation defined by the sequence of numbers
Ay Agy ey Ape

The sign taken is 4 or — according as the numbers 2, ..., A, form a positive or a
negative permutation of the natural descending order, and

A (g, ...y %) =TT£ (2, — ) (r < s).

FrosextUs has also deduced formulee for certain characters in terms of the cycles of
substitutions which give the characters of the symmetric groups of orders up to 8 !, and
some but not all the characters for groups of order > 8!

The tables in this paper have been calculated by simpler methods.

Let oy, ay, ..., @, be n symbols which are permuted by the operations of the symmetric
group of order n! The matrix of transformation of the «’s for any substitution S, is a
permutation matrix, which will be represented by As. This forms a (reducible) repre-
sentation of the group as a set of matrices and the spur of Ay is a compound character
of the group which is the sum of the character x® (8) which is unity for every operation
of the group, and a simple character y®. We have thus two sets of characters.

Now consider the (g’) expressions of the form «,2x,. These are permuted amongst

* ¢BitzBer. Preuss. Akad. Wiss. Berl.,’ p. 516 (1900), pp. 303-315 (1901).
T “ The Theory of Groups,” 2nd Ed., 1911.

o 2
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102 D. E. LITTLEWOOD AND A. R. RICHARDSON ON

themselves by the operations of the group. The matrix of transformation By is a
(reducible) representation of the group, and its spur is a compound character which
includes, besides the two known characters, two other simple characters that need to be
separated.

Consider first those substitutions which interchange only the two symbols «; and «,.
These form a symmetric group of order 2. Consider also the two-rowed principal minor
of the matrix By corresponding to these two symbols. The determinant and permanent
of this minor are known to be invariant under transformations by permutation
matrices. '

This implies that the matrix Bg is reducible by transformation into the direct sum
of two matrices, one of which is the matrix of transformation upon expressions of the
form o%a; + 0,2, and the other upon expressions of the form o2u; — aa,2.

The corresponding characters are the sum of the permanents of principal two-rowed
minors of Ay, and the sum of the corresponding determinants. These give us two sets
of compound characters ¢® and ¢“.

The number of times each includes the known characters 3@, x®, may be found
very easily from the orthogonal properties of the characters,* as will be shown in the
subsequent example, and the remainder is in each case a simple character.

Similarly the matrix of transformation of expressions of the form a,3x,2«4 is reducible,
and we consider the matrices of transformation of expressions of the forms of the three
immanants of the matrix

a®,  op? oy
ag®, g, o
xg®, ag?, ag

The corresponding characters are the sums of the corresponding immanants of the
principal three-rowed minors of the matrix As.

These three characters will be compound, including multiples of the first four characters
already obtained. When these have been removed, the remaining characters will be
simple.

In general, the sum of the immanants of the principal 7-rowed minors of the matrix
A, is a compound character of the group. If these compound characters are evaluated
in succession, the simple characters may be obtained by making use of the orthogonal
properties of the characters.

It should be noticed that, if the principal minor is a permutation matrix, its immanant
may be read from the table of characters of the symmetric group of order » ! If it is not
a permutation matrix, its immanant is zero.

Example—As an example we find the complete set of characters for the symmetric
group of order 5 !

* BURNSIDE, Op. ¢it., p. 291 ; FROBENIUS, ° SitzBer. Preuss. Akad. Wiss. Berl.,” p. 985 (1896).
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GROUP CHARACTERS AND ALGEBRA. : 103

There is a class of the group corresponding to every partition of 5. The classes may
be represented by 15, the identical operation ; 132, the class of operations with just one
cycle of order 2; 123, the operations containing one cycle of order 3; 14, one cycle of
order 4 ; 5, one cycle of order 5; 122, two cycles of order 2 ; and lastly 23, two cycles
of orders 2 and 3 respectively.

The numbers of operations in the seven classes

1) 15, 152, 123, 14, 5, 122, 23
are respectively

2) 1, 10, 20, 30, 24, 15, 20.
The first character 3 is equal to unity for each class

(3) 1, 1, 1, 1, 1, 1, L

The spur of Ay is equal to the number of cycles of order 1, and for the seven classes

will be respectively
5 3 2 1, 0 1, 0.

This is a compound character 4®. Denoting the class by ¢ and the number of operations
in the class by &, then

2 b V$,? = 5+ 30 + 40 + 30 + 15 = 120 = h,

the order of the symmetric group. Hence the compound character ¢? contains the
simple character @ exactly once. The remainder x® = ¢@ — 5@ is, for the seven
classes

(4) ' 4, 2, 1, 0 —1, 0, —1L
and since
2 by, 2" = 120,

this is a simple character.*

The next compound character is the sum of the permanents of the principal two-rowed
minors. For the class 15 there are ten principal minors each contributing 1 as its
permanent. For the class 132, there are three minors corresponding to the identical
permutation and one corresponding to a simple interchange. The character is 4. For
the class 123 there is but one significant minor ; for the classes 14 and 5, none ; for the
class 122, two, and for the class 23, one. '

Hence we obtain the compound character

10, 4, 1, o0, 0, 2, 1.

* FroBENIUS, Op. cit., 1896.
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104 D. E. LITTLEWOOD AND" A. R, RICHARDSON ON

Representing this by ¢, we have
S bV, = 120,
2 Ry 2,9 = 120.
Hence 8 = ¢® — 3@ — @ takes the values
(5) 5 1, —1, —1, 0, 1, 1,
and this character is evidently simple, since
T By, = 120.
Taking the determinants of the minors instead of the permanents, we obtain ¢

10, 2, 1, 0, 0, —2, —1.
Then .
2 by V@ = 0,

2 by, 2@ = 120.
Hence we obtain y® = ¢@ — 4@, taking the values
(6) 6, 0, 0, 0, 1, —2, 0.

It is not necessary to carry the calculation further, for there always exists one
character which takes the value -+ 1 for the operations of the alternating group, and
— 1 for the other operations. We have therefore 3@

(7) 1, —1, 1, —1, 1, 1, —1.

Further, we may multiply any simple character by x™® and the result will be another
simple character. Hence the complete table of characters is obtained as given on
p- 138.

This set is complete, for there are exactly seven classes, and hence exactly seven
characters. As a check

Z o™ =116+ 254 36 + 25 4 16 + 1 =120 =},
A

the order of the group.

This method presents no undue amount of labour for the symmetric groups of orders
up to 10 !, and even beyond this. The large numbers of operations in the classes need
not lead to heavy calculation in using the orthogonal properties of the characters, for
where the answer must necessarily be a multiple of the order of the symmetric group,
a very rough calculation is sufficient to determine which multiple it is, or even a calcula-
tion modulo some integer prime to the order of the group.
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- GROUP CHARACTERS AND ALGEBRA. 105

‘The proof that the character arrived at from each step, after the-elimination of the
known characters, is simple, follows from the next section.

Nomenclature.

This method of obtaining the characters gives a definite order to the characters.
We say that the order of one character is less than that of another, if it is arrived at
first by the above process. The most convenient nomenclature for the characters,
however, is not based on the order. The number of characters is the same as the number
of classes, and is therefore equal to the number of partitions of n. We shall associate
each character with one of these partitions. -

If a character is obtained from the sum of the immanants of the principal minors
of order (n — 1,)?, and the immanants correspond to the partition of n — A,

m— A=Ay + Ag+- ... + 2y,
then the partition of » o
n = 7\1 + 7\2 —l"' oo + )\i

is that associated with the character, and also with the corresponding immanant. If
the correspondence is obtained consecutively for the different degrees in their natural
order, the logical sequence is retained.

The character defined by a partition is unique if

M= A= A= ... = A,

We shall show that the character arrived at is independent of the order of the 2’s, and
that this partition of n used to define the character is the same as the partition used by
FroBeEn1US* and Youne.t

A compound character that is equal to the sum of a simple character taken once only,
and other characters of order less than this simple character, is said to be equivalent
to the simple character.

Now consider the partition of »
n = )\1+ )\2“{_ ..o+ >\,u.'

To this partition of n corresponds a simple character y®. An equivalent compound
character is obtained by taking the sum of the immanants of the (n — 1,)-rowed principal
minors of a permutation matrix. If the simple character used in these immanants is
replaced by an equivalent compound character, the resulting compound character will
still be equivalent to 3, for only characters of lesser order will have been added.

* Op. cit. (1900), (1901).
T ¢Proc. Lond. Math. Soc.,’ vol. 34, p. 361 (1902).
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106 D. E. LITTLEWOOD AND A. R. RICHARDSON ON

We can build up successively, compound characters corresponding to the partitions
A

”

>\u—1 + >\u3
AM—Z + )\p,-—l + )‘,.u

......

Mt A+ A+ A,

the character corresponding to the first row being + 1 for all classes of the symmetric
group of order 2, !, and the character of any subsequent row being obtained by taking
the sum of the immanants of the principal minors of a permutation matrix, corresponding
to the character of the preceding row.

The resulting compound character is equivalent to x®.  We shall now find a mathe-
matical expression for this compound character.

Consider the class corresponding to the partition of »

N=a; 4+ ay 4+ ... -+

The only significant (n — A;)-rowed principal minors of a corresponding permutation
matrix will correspond to the separations* of this partition, such that the two separates
are partitions of 2, and n — ;. The latter partition must again be separated to find
the significant minors of the (n — 2;)-rowed matrix. Similarly the partition of
n — A — A, must be separated, and so on, until finally the character corresponding to
A, 18 unity.

Hence the compound character is equal to the number of ways in which the partition

n=o; + oy + ... + a,

can be separated into p separates, such that the separates are partitions of A;, A,, ...
and A, respectively.
That is to say, the compound character is the coefficient of x%x, ... 2, in the
product.
(" 4 2 4 ... + 2,*) (2 + oo+ 2,2) o (B . 2.

This is the compound character obtained by FroBeNIUST and shows that our partition

n= A - Ay + ... + A,

is the same as the partition used by FroBENIUS to define the character, and hence the
same as that used by Younc.i Incidentally, this shows that the order of the 2’s is
immaterial. - Again, since FroBENIUS’ compound characters will yield the characters
one at a time and simply, the proof follows, that the characters arrived at by the method
described above, after elimination of the known characters, are simple.

* MacMauon, “ Combinatory Analysis,” p. 45 (1915).

T Op. cit. (1901), (1903).
1 ¢ Proc. Lond. Math. Soc.,” vol. 28, p. 255 (1927).
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GROUP CHARACTERS AND ALGEBRA. 107

§ 4. AppLICATION To SyMMETRIC FUNCTIONS.
ScHUR-Functions.*—Consider the symmetric functions of the n-quantities
Xy, gy eeey Ly
The commonly defined symmetric functions are the following :
(1) S, =3 ",
(2) a, = the sum of the products of r different «’s,
(3) h, = the sum of the homogeneous products of weight .}

A A

The properties of these functions and the relations between them have been studied
by MacMagoN,] who also defines ““ new ” symmetric functions.§ These have properties
analogous to the ScHUR-functions which we shall define in this paper, and are in fact
linear functions of the Scmur-functions. The ScHUR-functions are, however, more
fundamental and have considerable advantages over the functions of MacManoN, as
will be shown.

Represent by [Z,] the matrix
S, 1, 0, O, N

Sa, 8y, 2, 0,

Sz, Sa 8y, 3, 0,

(4) Z]l=] ......

OF

0
Sy, S, r—1
S, S ... S S, S

* These functions were first explicitly defined with reference to group characters by ScruR in his Disserta -
tion (““ Ueber einer Klasse von Matrizen,” Berlin (1901)). The fact that the quotient of |z, s+~ by |z~
which we shall show to be equal to the Scaur-function, could be written as a determinant |h);3—s+tl, was,
however, known and used (Jacosr, see Muir, “ Theory of Determinants, > vol. 1, p. 341 (1906), TrubI,
see MUIR, vol. 3, p. 135 (1920) ; NAEGELSBACH, see MUIR, vol. 3, p. 144), and KosTtka (KosTka, see MUIR,
vol. 4, p. 145 (1923)), calculated a series of tables connecting these functions with other symmetric functions.
These tables may readily be deduced from tables of characters, as will be shown. ScrUR gives the formula
for expressing them in terms of the products 8,, and conversely (p. 52), and expresses them as determinants
with elements %, (p. 47) and o, (p. 50). He also demonstrates other properties, showing relations between
S-functions and symmetric functions of the form X #,%,% .

) ¢

S

T It is with some hesitation that we have used %, in this sense, owing to the similarity to the symbol A,
used for an entirely different purpose. We have retained both symbols, however, because each is a used
and accepted terminology, hoping that, as we remark upon the distinction here, confusion to the reader
will be avoided.  The suffix r of the symmetric function %, denotes a number, the weight of the function,
whilst for %, the order of a class, the suffix p denotes a class which would be represented, not by a number,
but by the symbol of a partition of a number. For example, &, means a symmetric function of weight 3,
k) means the order of the class (3), 5.e., 2. Hence no logical confusion arises.

1 Op. cit. (1915).

§ Ibid, p. 203.

SOCIETY

OF

VOL. CCXXXIII.—A. P
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108 D. E. LITTLEWOOD AND A. R. RICHARDSON ON

Of the many formulse connecting the functions a,, &, and S,, we consider especially two.
(5) r! a, = |7Zl,
(6) r! b, = rZ,T.

According to our previous generalization we define symmetric functions, which we
shall call ScrUr-functions from the various immanants of this matrix.*

Let r= 2, + ...+ 2, be a partition of ». Then the function which we shall
designate by {2, . . ., A}, is defined by the equation

(7) A ! {)\1, “ ey 7\‘”} _ IZT|(A1:-..,A,)’

Let S be an operation of the class p of the symmetric group of order !, containing
a, cycles of order 1, a, of order 2, . . . Denote by S, the product

Slalszaﬁssa‘ .

Then from the nature of the matrix |Z,| it is clear that the corresponding product Ps
obtained from the matrix is either zero or a multiple of S,.

From the known formula
a, =% £+ hS,,

1, being the number of operations in the class p, together with the equation obtained from

the determinant |Z,|,
a, = Z+ PS)

it follows that
(8) ’ Z PS = kPSp-

Of the alternative signs, - is taken for even permutations and — for odd permutations.
The summation in (8) is taken over the permutations of the class .

* In addition to the Scmur-functions deduced from the matrix [Z,], the immanants of other special
matrices are of interest. The threefold aspects of combinatory analysis suggest a study of the immanants
of

a, 1, o, ... 0 a, 1, ... 0 Se, Sy, S,
. Gy @, 1, ... O .. 204, @, 1, O andof | S, S, S,
(1) 2 1 (11) b} 1 (iii) 1. 2. 3:
............ Sy S5 S,
Qpy Qpogy oo oon Oy Py Cpgy -+ @ | e

For example, the threefold relations which express a,, %, and 8, in terms of one another, have their counter-
part in the relations existing between the various immanants. Thus denoting the permanents of matrices
of type (i) by H, we have

H=aoH_ ,+aH. ,+.. . +a

corresponding to
by = hyy — Golop_o+ . . . + (— 1)@,
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GROUP CHARACTERS AND ALGEBRA. 109

Hence we may read the values of the S-functions* from the table of characters.
(9) r{a, .o A =2 YRS,

For example, taking the table of characters of the symmetric group of order 4!, as
given on p. 138, we obtain the equations

41h, =41 {4} = S+ 6528, + 88,8, + 65, + 35,2,
41 {31} = 38 -+ 652, — 68, — 352,
(10) 41 {2 = o8¢ 88,8, 1682,
4! 217 = 384 — 68,28, 1 68, — 38,

4 ! a4 == 4 ! {]4} - Sl4 - 681282 _‘l_‘ 88183 - 684 + 3822.

The translation of S, products into S-functions is even simpler. Owing to the
orthogonal properties of the characters we may simply read down the columns of the
table to obtain the coefficients. For example

St = {4} + 331} 4 2{2*%} + 3{217%} + {1},

S1282 = {4} -+ {31} - {212} - {14},
(11) Slss = {4} - {22} + {14}»
S = {4 — {31} + {217 — {14,

S =1 — (81} +2{2% — {217 4 {19

There are exactly the correct number of S-functions to express the general symmetric
function of weight 7 in terms of the S-functions of degree r, assuming that » = r. If
n < r, the S, products are linearly dependent, and some of the S-functions vanish
identically. It will be shown later that the S-function {A;, Ay, ..., A,} vanishes
identically if p > n and A, # 0.

§ 5. THE EXPRESSION OF SYMMETRIC PRODUCTS IN TERMS OF S-FUNCTIONS.

Expressions of the form X x,%x,x;* ... may readily be expressed in terms of
S-functions by a formula derived from FROBENIUS’ equation,
(1) S148,83% . L LA (2, . ., &) = T 4 g W Mt ig =2 g Ay

We start with the equation
2) 2@ty twg . =2 K {2y, Mg, Ag, ..}
— % = Ko, Oh,8,,
and obtain a formula for the coefficients K,.

* We use the contraction S-function for Scrur-function.

P2
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Multiply by A (24, . . ., %,).
Doty .. A (g, .., T) = —;; 2 Ko, MhS, A (2, . . .y %),

1

= .}—l IR K)‘Xp(z\)kpxp(.u)xlm+n—1x2ua+n—2 .
== :’: KAwl’\x+"—1x2/\2+%—2x34\3+n-—3 L.
since
S —=h ()= (),
=0, () # ().
The negative sign is taken when the order of the «’s in the product is a negative
permutation of the natural order, z;, z,, . . ., z,. The numbers A, Ay, . . . and y,, gy, -

are in descending order of magnitude.
The formula (3) thus gives K, as the coefficient of z*+"~'g,»**~2. .. gz, in the
product
Zxtwe® . A (2, .. @)

Though the number of termsin A (z, . . ., z,) may be very large, the coefficients may
be picked out very easily, as will be seen in the following example.
Example—We now express X z,%z,z, in terms of S-functions.
Here n must be = 5. We take the simplest case n = 5. We have to pick out the
coefficients in the product
(Z 20,w5) (B £ @' w5%7,),

the second summation covering all permutations of the suffixes 1, 2, 3, 4, 5, taking the
negative sign for the negative permutations. In the product we need only pick out the
terms with all the indices different.

We set out the calculation first and follow with the explanation.

4, 3, 2, 1, 0
3, 1, 1 4, 3, 5, 2, 1 1, 1, 1, 1, 1 +
1, 3, 5, 3, 2, 4, 1 1, 1, 1, 1, 1 +
1, 1, 3 5, 4, 2, 1, 3 1, 1, 1, 1, 1 4
3, 1, 1, 4, 6, 3, 2, 0 2, 1, 1, 1, —
3, 1, 1, 7, 4, 3, 1, 0 3, 1, 1, +
, 3, 1, 5 6, 3, 1, 0 2, 2, 1, —

We set down in the first row of the first column the indices of the right hand term in
the product, namely, 4, 3, 2, 1, 0. We have to add to these the indices 3, 1, 1 in any
order, so that the five indices resulting are all different. In the first case we may add
any of the three to zero. In the second row we add 1 to zero. The sum is 1, and as this
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index must not be repeated, either the other 1 or the 3 must be added to 1. Following
this principle we obtain the second and third rows, and if 3 is added to zero the fourth
row. The other possible arrangements are given in the last three rows.

In the second column we give the corresponding sums of the indices, namely,

MA+n—1, Ag--n—2, ..., A, in some order. In the third column these are
rearranged in descending order, and the numbers 4, 3, 2, 1, 0 respectively subtracted,
giving the numbers A, Ay, ..., %,. In the fourth column we have a 4 or a — sign

according as the order in the second column is a positive or a negative permutation of
the descending order.

Hence
3 2y = {3, 1,1} — {2, 13} + 3 {15} — {22, 1}.

There are of course other methods. HANKEL* shows that

Sa? 1,
Sa+B’ SB, 2)

nl X xS wa,? ... == 2
Sa+B+w Sﬂ+w SV’ 3,

......

from which the appropriate formula could be deduced.

ScHUR also gives the following formula.f Using our notation let X 7,,,., . "™ . . .

be any homogeneous symmetric function of weight » = n, + n, 4 .... Represent
T, - - - Symbolically by 7, 7,7, .. .,and put 7= 1,7_, =7r_y=...=0. Then
Z Pugnny - o BT =2 |1y o] A1 2e, )

See also p. 114 of this paper.

§ 6. THE VALUES oF THE S-FUNCTIONS WHEN THE WEIGHT OF A SYMMETRIC FUNCTION
OF 7 QUANTITIES EXCEEDS 7.

If the weight exceeds n, the S, products are not all linearly independent, hence the
same is true of the S-functions. In the S-functions this linear dependency manifests
itself simply.

An S-function of weight p, of n quantities z;, %, . . ., ,, which corresponds to a
partition of p into more than n parts, vs identically zero.

The number of symmetric functions of weight p is equal to the number of partitions
of p into not more than » parts. Hence we have exactly the right number of non-zero
S-functions to express these symmetric functions, and the non-zero S-functions are
linearly independent.

* See MuIr, op. cit., vol. 3, p. 220 (1920).
+ ScHUR, op. cit., p. 54.
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Consider the equation
(1) 2z Mwe™ . L. 2l = g, {A},
the symmetric functions being of weight p and (1) being a partition of p,
(2) MA A+ o Fh=p (M= h=...=1)
g, is the coefficient of ,»*"~'g,»*"=2, | g, in the product,
(3) 2 xS A (2, .. ).

The only S-functions appearing on the right of (1) are those for which the number of
parts, s, in the partition of p, is not greater than n. Hence all symmetric functions of
weight p must be expressible in terms of these, which are linearly independent.

Now consider the symmetric functions of = -+ 1 quantities @, %, ..., Z, Zui1,
and put z,,; = 0.

The left-hand side of equation (1) is unchanged. The expression (3) is multiplied
by @, . . . z,, and certain terms are added which are zero for z,,, = 0.

Hence the right-hand side of equation (1) is unaltered, save that certain S-functions
are added which correspond to a partition of p into n ++ 1 parts. Thus a certain linear
function of the S-functions corresponding to a partition of p into » - 1 parts must be
zero. Corresponding to a different function X x,"x," . . ., we obtain a different linear
function of these S-functions. Now there are exactly sufficient S-functions of weight p
corresponding to partitions of p into not more than n + 1 parts, to express the symmetric
functions of » - 1 quantities. Hence we may obtain in this way sufficient equations
to define the values of these S-functions.

It follows, then, that the obvious solution of these equations, namely that for which
all the S-functions corresponding to a partition of p into exactly n 4 1 parts are zero,
is the only solution. Similarly the result follows for partitions of p into more than
n -+ 1 parts. ’

§ 7. Tue EXPRESSION OF THE S-FUNCTIONS AS A DETERMINANT AND AS THE RATIO
OF DETERMINANTS.

Let the class p of the symmetric group of order # = n ! contain «, cycles on 1 symbol,
ay on 2 symbols, ete. Denote by S, the product

Sp == S]_a182a‘ “ o
where
m
S,= X =z

Then FroBeENTUS’ formula for the characters of the symmetric group may be expressed
as follows :—
S, A (2, .0y 2y) =3 & Wyt Lyt
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Hence
Zhy NS, A (g oo By) =R E MM
since
x kPXP(A)XP(M) =h (7‘) = (U’)
=0. (A # (w)
Hence
1 B4 og et g,

2 by, M8, =

h

> 4 wl""'l. e o L1 )

The summations on the right are taken over all permutations of the suffixes of the
x’s ; of the alternative signs 4 is taken for a positive and — for a negative permutation.
Hence

ms/\t+m—-t

e T

0} =

s denoting the row and ¢ the column of the matrix from which the element is taken,
and the S-functions are expressed as the ratio of two determinants of degree m.

In this form some properties of the S-functions have actually been studied before the
discovery of Group Characters by FrROBENIUS.

In 1841 Jacosi, loc. cit., and later, in 1864, TruUDL, loc. cit., prove that the ratio of
these determinants is equal to another determinant in which the elements are the
symmetric functions A,.

Again in 1871, NARGELSBACH, loc. cit., expressed the same ratio of the determinants
as a determinant in which the elements are the symmetric functions a,.

Later KostkA* proved TruDI'S and NAEGELSBACH'S theorems for himself in a more
elegant way, and obtains further properties of the functions. He calculates tables
connecting these functions (S-functions) with other symmetric functions.

Recently A1TKEN T has obtained a very illuminating generalization of KosTkA’s results.

The JacoBi-Trubt formula may be written

k)\,, : k/\1+1, hA,+2,

lxs"sﬂ”"[ k)‘a-—la k/\ﬁ h)\,+17

R
k)\p-pﬂ, e k)\p
= h -3 )
Hence | e |
{)‘1) A27 o e ey )\p} = ! h'\s"‘s'*'l l.

Now assuming the number of s to exceed the weight, any symmetric function may
be expressed uniquely in terms of the functions S,, S,, S;, etc. In any function ¢,

* Bee MUIR, op. cit., vol. 3, pp. 154, 158, (1920), vol. 4, p. 145 (1923).
T ¢ Proc. Edin. Math. Soc.,” vol. 1, p- 55 (1927) and vol. 2, p. 164 (1930).
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replace Sy, S, S, . . . respectively by — 8,, — S,, — S, . ... We term the function
so obtained the conjugate of ¢, and represent it by .
“Clearly a,=h, b, = a, Again if (py, .. ., p,) is the partition of » associated with
(As v e oy Ap)
{or, o ud =000, 2

It immediately follows that

{7‘15 Y] )\p} = {V'l’ <o V'q}

= | h,us—s-i-t l
= | a/.ts—8+t |
al’-x’ aﬂl'+1’
- aﬂa"l’ a#a’
a,.;q—q+ 1 EE) a,u.q

Alternatively this result could be deduced immediately from NareELSBACH’S theorem.
KosTrA’s tables connect these functions with the functions Za,%x,* . . ., and with

the functions @, A typical table of KosTka, expressed in our terminology, is as
follows :

— BTGB | D209 5Ty | D252, | a3y | Dy wy? x4z, PR —
{1°} 1 —4 3 3 —2 -2 1 {5}
{213} 4 1 —2 —1 2 1 —1 {41}
{221} 5 2 1 -1 —1 1 0 {32}
{312} 6 3 1 1 —1 —1 1 {312}
{32} 5 3 2 1 1 —1 0 {221}
{41} 4 3 2 2 1 1 —1 {218}
{5} 1 1 1 1 1 1 1 {15}
ad a3, R a2, oy @40y o

The table is read only as far as the leading diagonal, or from the leading diagonal
onwards, either across the table or downwards, according to the equation required.
For example

a’a; = {3, 12} 4 {22, 1} + 2 {2, 13} -+ {15},
{33 ‘]'2} = Z x13x2x3 *“’“ Z xlzxzzwa + 32 $12w2w3$4 + 6x1$2fv3x4x5,'
T omda? = 8,2} — {22, 1} — (3, 12} + 2 {2, 13} — 2 {1},

3, 2} = aya; — a0,
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These relations could be obtained by methods already described in this paper, but the
tables may also be deduced from the tables of characters as follows. Consider the table
of characters of the symmetric group of order 5!, the characters being in their usual
order reversed, that it, commencing with [15], and the classes being arranged with the
partitions in the same order.

— (1%) (21%) (221) (31%) (32) (41) ®)
[19] 1 —~1 1 1 —1 —1 1
[217] 4 -2 0 1 1 0 —1
[2:1] 5 —1 1 —1 -1 1 0
[312] 6 0 —2 0 0 0 1
[32] 5 1 1 ~1 1 —1 0
[41] 4 2 0 1 —1 0 —1
[5] 1 1 1 1 1 1 1

First we show how to express a,5, a,%a,, etc., in terms of S-functions.

Clearly a,° may be read off directly, for the coefficients are the numbers in the first
column.

a,2a, may be expressed in terms of ;5 and 8,38,, and also in terms of {41}, {32}, . . . {15}.
Hence the coefficients are obtained by taking that linear combination of the first two
columns of the table of characters, which vanishes for the first row. Further, the
coefficient in the leading diagonal must be unity. Clearly we must add columns (1)
and (2) and divide by 2. 'We thus obtain the coefficients in the second column of the
Kostka table below the leading diagonal.

For the third column of the KosTka table we take that linear combination of the
first three columns of the table of characters, which vanishes for the first two rows,
and is unity for the third row. Similarly we may complete that half of the Kostxa
table below the leading diagonal.

For the other half of the KosTtra table, above the leading diagonal, we commence
at the bottom right-hand corner, and proceed in a like manner ; for e.g., Sz,3z,2; may
be expressed in terms of S;8,% and terms of higher order, and also in terms of {311} and
S-functions of lower order.

The double use of the table may also be justified by such considerations, if we bear
in mind the orthogonal properties of the table of characters.

§ 8. MuvrTIPLICATION OF S-FUNCTIONS.

We set out the rules for multiplication in the form of three theorems.

For the definition of Characteristic Unit, etc., see FrRoBENIUS.* Strictly, FrRoBENTUS
uses the term Characteristic Unit (“ Charakteristische Einheit ”) for the set of h
coefficients of the group elements in the idempotent element, rather than the idempotent:

* ‘ SitzBer. Preuss. Akad. Wiss. Berl.,” pp. 328-358 (1903).

VOL. CCXXXIII.—A. Q
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element itself, in which sense we use it, but the distinction is not thought to be sufficient
to warrant the introduction of another name.

Younc* obtains certain Characteristic Units of the symmetric group thus. Consider
the symmetric group of # symbols

Olgy Olgy « + oy Ko

By the symmetric group of 7 of the symbols is meant the sum of the operations of
the symmetric group on those 7 symbols. By negative symmetric group, is meant the
same thing with a minus sign attached to negative substitutions.

Letn = 4+ ...+ 2, beany partitionof n. (2, = 2, =...= 1,). DBuildatableau
A with 2, of the symbols «,, ..., , in the first row, A, in the second row, etc., and
finally 2, in the pth row. Each row commences at the first column, the other symbols
being consecutively one column later. Take the product of the symmetric groups of
the rows and the negative symmetric groups of the columns, the positive symmetric
groups preceding (or succeeding) the negative symmetric groups, and denote this by (A).

Then :

Xom (A)

is a Characteristic Unit corresponding to the simple character y®.

Further, there are y,* possible tableaux corresponding to (1) in which the order of
symbols in each row and each column follows the order a, s, ..., «,, and these
“standard 1 tableaux may be made to correspond to the diagonal elements of a
corresponding matrix sub-algebra of the FrRoBENTUS Algebra. Hence e.g., the modulus
of the sub-algebra being a matrix with unity in each position in the leading diagonal
and zero elsewhere, the modulus of the sub-algebra is

o)

Yo ¥
3 (4)

summed over the y,* standard tableaux. The identity

follows, the summation being for all the X y, standard tableaux corresponding to all
partitions of n.

The partition # == A; + Ay + . ..+ 2, is the same partition as that associated with
the character by FroBENIUS, and hence the one associated with the character in this

paper.
The significant feature of the Younc tableaux is that if a tableau A contains two

* ¢ Proc. Lond. Math. Soc.,” vol. 83, p. 97 (1901) ; vol. 34, p. 361 (1902) ; vol. 28, p. 255 (1927) ; vol. 31,
p- 253 (1931).
T Young, ‘ Proc. Lond. Math. Soc.,” vol. 28, p. 258 (1927).
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symbols « and B in the same row, and a tableau B contains the two symbols in the same
column, then

(A) (B) = (B) (A) =0,

since the symmetric group from (A) including « and g has a factor [1 -+ («B)], and the
negative symmetric group from (B) a factor [1 — («p)], and [1 4 («B8)] [1 — («B)] = 0.

Hence the product of any two different standard tableaux is zero.

We now proceed to the enunciation of our first theorem.

TurorEM 1.—The product of two S-functions of degrees r and s respectively vs equal
to the sum of integral multiples of the S-functions of degree r + s.

The theorem is demonstrated by showing an isomorphism between the multiplication
of S-functions and the multiplication of corresponding Characteristic Units.

Lemma L—If % (A) s & Characteristic Unit of the symmetric group of order b =r |,

corresponding to the svmple character 3V, then (A) contains an aggregate of 3, he
operations of the class . :

All Characteristic Units corresponding to the same simple character must contain the
same aggregate of operations from each class, for the Characteristic Units may be
transformed into one another.

Again, the modulus of the invariant sub-algebra of the FroBENIUS algebra which
corresponds to the character, is equal to the sum of y,® Characteristic Units. This
modulus is also equal to

1
7 2o T 3,00, *

where C, denotes the sum of the operations in the class p.

The Lemma follows.

LemmA IL.—An isomorphism exists between the multiplication of S-functions and the
multiplication of corresponding Characteristic Units involving different sets of symbols.

Consider the symmetric group of substitutions on r symbols «, . . ., «, and the
symmetric group of substitutions on s symbols B, . . ., . The direct product of these
groups is a sub-group of the symmetric group of substitutions on the r |- s symbols
% oo v 0y By o oo B The product of two operations from these symmetric groups
will have the sum of the cycles of the two operations. Hence, if the operations belong
to classes p and p’ respectively, and the product belongs to the class p”’

SPSP' = Sp">

S, being defined as in § 5.

Using this result together with Lemma I, the proof of Lemma II follows.

The proof of the theorem now follows immediately, for the product of two
Characteristic Units, which are commutative, since they correspond to substitutions

* BURNSIDE, ““ The Theory of Groups,” 2nd Ed., p. 316 (1911).

Q 2
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on different sets of symbols, must in the nature of the case be a Characteristic Unit.
The Characteristic Unit of the product corresponds to a compound character which is
the sum of integral multiples of simple characters.
Corollary.—The coefficient of the character v tn the product of {3} and {u} is not greater
than
%o

OWEPE
x 0( )XO(#)

This follows from the multiplication of the Characteristic Units corresponding to
%0® {2} and %" {u}.

TurorEM I1.—In the product of two S-functions {A,, ..., A} and {uy, ..., u}, the
S-functions appearing in the product may be obtained by the following rule.

Corresponding to {\, . . . A} form a tableau A with N, symbols in the first row, \, in the
second row, etc., and corresponding to {u,, . .., u} form a tableau B with w, symbols in
the first row, p, wn the second row, ete. Construct new tableauz Cy, C,, . . ., each containing
all the symbols of tableauz A and B, and such that no two symbols in the same row, either
wm A or in B, are in the same column i a C, and no two symbols in the same column, either
wn A or in B, are in the same row in a C.

Then the S-functions which appear in the product correspond to the possible tableaux C.

Form the product (A) of the symmetric groups of the rows of A and the negative
symmetric groups of the columns. Then

Z20® (A)

is a corresponding Characteristic Unit.
Similarly, form a Characteristic Unit

1
E}— XO(M) (B):

corresponding to the S-function {u,, . . ., u,}, where (B) is the product of the symmetric
groups of the rows of B and the negative symmetric groups of the columns, and g = s !
Now the product

Ay (W)
Tofa (4) (B)

is a Characteristic Unit of the symmetric group of order (r 4 s) !, and may be expressed
as the sum of simple Characteristic Units. As in Lemma II to Theorem I, if an
S-function {vy, vy, . . .} appears in the product of {,, ...} and {yu;, ..., u;}, then
there will be a corresponding Characteristic Unit. If we multiply (A) (B) by the modulus
of the sub-algebra of the FrRoBENIUS algebra corresponding to the character (vy, v,, . .),
we shall pick out from the terms of the product those which belong to the same sub-
algebra. Hence if these terms exist, the product (A)(B) times the modulus of the
sub-algebra is not zero.
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But the modulus of the sub-algebra may be expressed as a multiple of the sum of
%0 tableaux corresponding to (v). If two symbols appear in the same row (or column)
either in A or in B, and in the same column (or row) in a tableau C, then the product
(A) (B) (C) must be zero. Hence at least one tableau C must exist corresponding to
(V1> Vg, - . .), such that no two symbols in the same row either in A or in B appear in the
same column of C, and no two symbols in the same column either of A or of B, appear in
the same row of C. The theorem follows.

To find the product of an S-function by a second S-functiom of very small degree,
Theorem II is often sufficient, the S-functions corresponding to possible compound
tableaux appearing with coefficient unity. For example

BB =16+ 61+ {42+ (33}

As a check we may evaluate the coefficient of S;° on both sides.
It is not necessary to go to very high degrees, however, before the coefficients begin
to differ from unity, and a more precise rule becomes necessary, e.g.,

200 0=+ 381+ &7+ 42+ {41 + 83 +2{3,2,1}.

The following theorem, however, enables us to multiply S-functions of any degree.

TueoreM IIL—Corresponding to two S-functions {ny, ..., N}, {v, 555 v} buid
tableauxr A and B as wn Theorem II. Then vn the product of these two functions, the
coefficient of any S-function {vy, vy, ...} 1s equal to the number of compound tableaux
wncluding all the symbols of A and B, and corresponding to {v,, vy, . . .}, that can be buslt
according to the following rules. '

Take the tableaw A wntact, and add to it the symbols of the first row of B. These may be
added to one row of A, or the symbols may be divided without disturbing their order, into
any number of sets, the first set bewng added to one row of A, the second set to @ subsequent
row, the third to a row subsequent to this, and so on. After the addition no row must contain
more symbols than a preceding row, and no two of the added symbols may be in the same
colummn.

Neat add the second row of symbols from B, according to the same rules, with this added
restriction.  Hach symbol from the second row of B must appear in a later row of the com-
pound tableaw than the symbol from the first row in the same column.

Simalarly add each subsequent row of symbols from B, each symbol being placed in
later row of the compound tableaw than the symbol in the same columm from the preceding
row of B, until all the symbols of B have been used.

No simple proof has been found that will demonstrate it in the general case. However,
the only applications of the theorem used in this paper are included in the special case
of multiplication by %, which we proceed to prove. Of course every multiplication
could be reduced to this case, for every S-function can be expressed as a determinant
with elements of the form %,, but the procedure is not so simple as the direct use of the
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theorem. We next deduce the truth of the theorem for multiplication by an S-function
corresponding to a partition of r into two parts. The method can be extended to
partitions into three and more parts, but the explanation becomes lengthy and difficult,
and this has not been attempted here. Exactly parallel methods would prove the
theorem for multiplication by the associated S-functions {17} and {2717%.

Consider the product
{USTRR W 1

where £, = n. N

As in Theorem II, denote by (A) the product of the symmetric groups of the rows
and the negative symmetric groups of the columns of a tableau A with A, symbols in the
tth row. B is a tableau with one row containing 7 symbols. The corresponding
Characteristic Units are

) ) 1
X?—:,_— (4) and — (B).

Two numbers of the FropENIUS algebra are said to be equivalent if one can be
transformed into the other. The symbol ~ denotes equivalence.

The theorem is proved for this case if we can demonstrate that

L ay Ly ~x %"
n ! (A)'TI(B) (r 4 n)!
the summation on the right being taken over the tableaux C defined in the theorem,
%™ being the corresponding character.

The modulus of the invariant sub-algebra corresponding to y*, of the FrROBENIUS
algebra of the symmetric group of order (n + 7) ! is equal to

Xn(v)
iy = (O

the summation being taken over the y,* standard tableaux D, corresponding to x.
The assigned order of the symbols needed to decide which tableaux are standard, is any
order of the n symbols of A that would make A a standard tableau, followed by the r
symbols of B taken in the same order.

Since the identical element of the group, and also the modulus of the sub-algebra,
are unaltered by transformations, we may multiply both sides of the above equivalence
by this modulus and equate coefficients of the identical element. The right-hand side
becomes equal to

(©),

gArvXO(V)
(7)1’
where g,,, is the number of tableaux C which correspond to . From the method of
definition, each of the tableaux C is standard.
Now suppose that the row of 7 symbols in the tableau B is divided in the tableau C
into ¢ rows containing respectively @, @, . . ., @, of these symbols. Corresponding to
one tableau C, there will be (r!)/(a, ! @,! ... a,!) standard tableaux D which can be
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obtained by the rearrangement of these symbols, the symbols in each row still being in
the assigned order. The tableaux D that do not correspond in this way to a tableau C
will make the product (A) (B) (D) zero, from Theorem II.

Consider the coefficient of the identical element in the product (A) (B) (D). The
tableau A contains only the first # symbols, and the tableau B only the last » symbols.
Hence the only significant terms from the tableau D are those that contain no cycles
involving both sets of symbols. Thus the required coefficient will be unaltered if we
replace the tableau D by that portion of it which contains the first # symbols, which
portion must be identical with A if the product is not to be zero, and multiply by the
symmetric groups on the a,, @, . . ., @ symbols from tableau B.

The coefficient of the identical element in the product

) 1 o)
Lot (4) 7 (B) 724, (D)
must therefore be )
(v

1
(n—DC_Ppm.ﬂ.al! a! ... a!
If we sum for the (r!)/(a,! . .. a!) tableaux D which correspond to each tableau C,
we obtain
%o
(mn+7)!

for each tableau C. The theorem follows for this case.

We next consider the case
(A, .o g 1)

gGn=@gn—{g+13{r—1,

and seek the tableaux that can be formed corresponding to successive multiplication by
{g} and {r}, and take away those which correspond to tableaux formed in the multiplica-
tion by {g + 1} and {r — 1}.

Corresponding to {g} and {r} form tableaux (X;, ..., X,)and (Y, ..., Y,), which we
call B and C. Let B, and C, denote the tableaux Xy, - o Xpgr) and (Yy, ..o, Y,o0).

Let D be any tableau formed by successive multiplication by {g} and {r}. Now if we
read the letters added to the tableau A in forming D, beginning at the first row and
reading right to left, omitting the suffixes of the X’s and Y’s, we form a permutation of
XY

If this permutation is a lattice permutation,* it corresponds to a tableau as defined
in the theorem for multiplication by {g, r}. We shall show that to each non-lattice
permutation there corresponds a tableau in the multiplication by {g + 1} {r — 1} and
conversely, which proves the theorem for this case.

We use the equation

* MacManon, “ Combinatory Analysis,” p. 124 (1915). A lattice permutation of XeY?Z¢. . . is a permu-
tation such that among the first 7 terms of it, the number of X’s = the number of Y’s = the number of Z’s,

etc., for all 7.


http://rsta.royalsocietypublishing.org/

a
J,
A

/—%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
yA \
o \

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

122 D. E. LITTLEWOOD AND A. R. RICHARDSON ON

In the permutation of X?Y” number the X’s and Y’s in the order of their appearance.
If Y, succeed X, and precede X,,, it is said to be of index s — ¢, and is said to be of
positive, zero or negative index according as s — ¢ is positive, zero or negative.

For a lattice permutation, there is no Y of positive index.

Now in a non-lattice permutation of X?Y", take the first Y of greatest (positive) index
and replace by an X. We obtain a permutation of X¢**Y*"1.  Conversely from a
permutation X" 'Y"!, take the last Y of greatest (zero or positive) index, and replace
the X immediately following it by a Y, unless all the Y’s are of negative index, in which
case replace the first X in the permutation by a Y. We thus form a one-one corres-
pondence between the non-lattice permutations of X¢Y" and the permutations of
Xe*1yr=!,  Examination shows that if D is a permissible tableau in the multiplication
by {g} and {r}, and D, is the tableau obtained from this by replacing the Y by an X as
above, then D, is a permissible tableau in the multiplication by {g 4 1} and {r — 1}.
For the Y must precede an X in the permutation, and hence the replacing X in D, cannot
follow a Y in the same row. Again the X cannot follow a Y in the same column in D,
for this would mean that the tableau D had two Y’s in the same column. Lastly the
replacing X in D, cannot be in the same column as another X, for this would mean that
an earlier Y in the permutation would have the same index as the replaced Y. Similar
considerations prove the converse.

This completes the theorem for the multiplication by {g, r}.

Example.—To form the product of

{4, 3, 1} X {2213}.
We form the two tableaux

a,b,c,d o, B
e:fﬁg b} Ys 8
h €

The following compound tableaux may be built according to Theorem III. Since
the positions of the symbols a, b, ¢, d, e, f, g, and h remain constant, we shall replace
these symbols by 0’s in their positions, as this brings to the eye more clearly, the variable
positions of the other symbols

0000xpBp 0000apPp O0000axpB 0000af

0003 0003 000y 000~
0 0 03¢ 03
g g

0000a« B 0000« B 0000 a P 0000a B

000y 000¢ 000 000
0c¢ 0 0~ 0v
3 3 3 e 3

€ €
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0000« B 0000« 0000« 0000«
000 00098 ¥y 000 By 000 By
0y 3 039 ¢ 03 0«
€ € 3
0000« 0000« 0000« 0000«
000 By 000 0008 000¢p
0 0y S 0y (V'S
3 g d ¢ 3
€ €
0000« 0000 « 0000« 0000«
000« 000« 000« 000
0Be 0B 0B 0B~y
3 3 ¢ 3 3 e
€
0000« 0000« 0000 « 0000«
000 000 000y 000¢¥y
0Bxy 08 0ce 0
° 19 p B
€ € d 3
€

0000« 0000 « 0000 0000
000 000 000 « 000«
0y 0y 08y 0By
B e B d ¢ 3
3 3 €

g
0000 0000 0000 0000
000« 000« 000« 000
0p 0y 0 vy 0o B
Y9 Be B Y 8
€ 3 3 €

€

0000 0000
000 000
0 o (V3
By By
3¢ 3

VOL. CCXXXIII.—A, R
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Hence :
4,3, 1} x {221} = {6, 5, 2} + {6, 5, 13} + {6.4, 3}

+2{6,4,2,1} +1{6,4,15% -+ {63,929
+{6,3,2,13 (6,31 | (53
+2{522, 1} 4 {5219 +2{5,4, 3,1}
+2{5,4,22 4 2(5,4,2, 13 + {5, 32

+ {5, 3212 +{5,3,221} -+ {5,3,2, 15
+ {423, 2} + {423, 12} + {42021},
+ {422, 1% +{4,322,1}  + {4,3,2%
+ {4, 3, 2212},

This result may be checked by equating the coefficients of S,!* on both sides of the

equation. We obtain

0 20" Z 2"
8

' 50 131”7

(1) and (u) denoting the characters corresponding to (4, 3, 1) and (221), and %™ being
summed for all the characters corresponding to the S-functions on the right of the

equation. In our example 3, = 70, 3, = 5. Hence
0.5 X %o
8! 5! 13!
70.5.13!
g )

SO Y

= 450450.
Using the formula
n! I (A, — r — 74 3)
(A) 78
Xo ' =

H(N‘f‘}’_r)! ’

this equation proves to be correct.

§ 9. RELATION BETWEEN S-FuNcrions AND MacManoN’s NEW SyMMETRIC FUNCTIONS.

In his book on Combinatory Analysis, MacMarON (p. 203) defines New Symmetric
Functions, which he denotes by a,,, ., or kg, .., according to the multiplication law

Opipy 0 By ety = Opyop 0 @0 ety T By eepy g

with a similar law connecting the functions %, . ,. Further he shows that

Uy, ..cp, = kql... 7y

if (p, . .. ps) and (¢, . . . ¢;) are zigzag conjugate compositions of .
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These functions are very useful, and the multiplication law is very simple, but they
have the serious defect of being linearly dependent. For example

Ua11 + Vg = Gy91 + @3-

Further, without actual evaluation, the complete set of linear relations connecting
the functions of a given weight would be very difficult to obtain.

By comparing the multiplication law of MaAcMaBON’s functions with the multiplication
law of the S-functions, remembering in particular that the product of the two S-functions
is the sum of multiples of S-functions with positive integral coefficients, it is clear that
each of MacMarON’s functions is a linear function of S-functions with positive integral
coefficients.

Compared with MacManoN’s functions, the S-functions have only one disadvantage.
The multiplication law is not quite so simple. To offset this there are numerous
advantages. The S-functions are linearly independent, and this fact alone more than
counterbalances the possible disadvantage of the more complicated multiplication rules.

Further, as we have shown, the connections between the S-functions and the products
of the functions S, may be read immediately from the table of characters of the
symmetric group.

Lastly, the more fundamental nature of the S-functions is illustrated by the formula
connecting these with the symmetrm product sums.

Example—FExpress T «*% in terms of S-functions, S, products, and in terms of the
functions a,.

6543210
3 31/6573241)
31 3/6574213 3{1111111}
1 3 3/7546213
31 68435201h2{211111}
31 3 |6853240|)
31 9546310
}; 2{31111}
31 3 9643510
13 3 7843510 — {22111}
331 6874210 (2221}
3 31 9574210 — {3211}
13 3 7846210 {2221}
331 9853210 {331}
313 9673210| — (322

Hence
T o3p%y = {31} — {3, 2%} — {3, 2, I*} + 2 {221} — {2°1%} 4~ 2{3, 14} — 2 {2, 1%} 4 3 {17}.

R 2
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We have expressed the symmetric product sum in terms of S-functions. To express
in terms of the S,’s, we read from the table of characters of the symmetric group of
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order 7 !.
Class.| 17 | 152 | 143 | 14 | 125 | 16 1322 | 1223 | 124 | 25 132 | 34 | 128
Order.| 1 21 70 | 210 | 504 | 840 105 | 420 | 630 | 504 | 280 | 420 | 105
1 ({321} 21 1| -3 —1 1 0 0 1 1| —1 1 0| —1;| —3 1
—1 [{322} 21 | —1 | —3 1 1 0 0 1| —-1| -1 —1 0 1 3 1
221} | 14| —4| —1| 2| —-1| o] o 2| =1l o 1| 2|—-1| o] 1
—1 ({3212} | 35| —5 | —1 1 0| —1 0| —1 1 1 0| —1 1 —1 1
—1 |{22138} 14 | —6 2 0] —1 1 0 2 0 0| —11| —1 0| —2 2
2 {314} 15| —5 3| —1 0 0 1] —1 1| —1 0 0| —1 3
—2 |{21%} 6| —4 3| —2 1 0| —1 21 —1 0 1 0 1 0
3 {17} 1| —1 1] —1 1] —1 1 1| —1 1| —1 1| —1] —1
0 0 0 0 0 -3 0 0 0 0 9 —12 0
0o 0 0 0 0 —1 o 0 0 0 %+ —1 o0

Add the numbers of the rows corresponding to the S-functions. We thus obtain the

first row below the table.
Hence

Lastly,
T oy = {321} — {3, 2% — {3, 2, 12} -+ 2 {251} — {2219}
+23, 1% —2{1% 4317

a37

Multiply by 4,/k to obtain the second row below the table.

) 0‘333'1/ = %S].SG -+ S7 + %81832 — S384-

a4a
a’2>

al ’

-

— 2

ag

Qo

as,

g,

' + 3a,

s
Ay

a;

Qg

(42

A305® — G32Ay - Gy — Qe + B;0,2 — A0, — a0,

Ul - B0 — G0y — GGy | GOy - B 0E — (604

-+ 20,03 — 20,0, — @0, + g0y + 20,02 — 20,0, — 2040,

+ 2a7 - 2“6“1 + 2“7 "l_ 3&7
A30e? — 205°0, — Q00 + 50,05 + Baya® — Ta0, — 4aga, + Ta,

A similar procedure would express the function in terms of the %,’s.
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§ 10. ConsTRUCTION OF TABLES OF CHARACTERS OF THE SYMMETRIC GROUPS.
Second Method.

By using the rules for the multiplication of S-functions, and a formula* connecting
the characters of a group with those of a sub-group, the characters of a symmetric group
can be constructed easily.

Let H be the symmetric group of order # = n 4 1!, and G the symmetric group of
order g = n !, of substitutions on the first » symbols.

The group G is a sub-group of H, which leaves one symbol «,_.,, unaltered. Denote
any class by g, and let this class have A, substltutlons i H, and g, in G

Now consider the equation

(].) {7\], 7\2, .« o ey 7\p} {1} - {7\1 + 1; 7\2: L )\p} + {)\la )\2 + 17 e )\p} + ..
.. + {)\1> )\2a AL )\p"}_ 1} + {)\1? )\2) c e )\p’ 1}>

those terms on the right for which the numbers in the brackets are not in descending
order being taken as zero ; e.g.,

{4, 4} {1} = {5’ 4} + {4: 4, 1}
the term {4, 5} being taken as zero.

(2) {)‘13 CEEE) 7‘:0} S1= é % ¢p(A)gpSpa

¢," being a character of the group G, and S, being that product of the S,’s which
corresponds to the class p of the group H. Denote any of the terms on the right of (1) by

1
(3) ¢ {“'1’ L] u‘q} = 7?/ % XP(M)hpsp)
%.* being a character of H.
Hence
h
(4) ¢ =L 5y ),
kgP ®

We now use FroseNIus’ formula connecting the characters of a group with those of

a sub-group, namely, in the simple case in which each class of the group corresponds to a
single class only (of possible order zero) of the sub-group,

(5) Xp(z) =X gij¢p )
and

the positive integral coefficients g,; being the same in both sets of equations (5).
Hence from (4)

(6) Xp(/-‘) — Z¢P(:\)’
* FroBENIUS, ‘SitzBer. Preuss. Akad. Wiss. Berl.,” p. 501 (1898).
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the summation being taken over all those partitions (1) of n, such that in the product
{2} {1}, {¢} appears as one of the terms.

Equation (6) enables us to construct the greater part of the table of characters of the
symmetric group of order # -+ 1! from the table of characters of the group of order = !,
namely, the characteristics™ of all those classes of substitutions which leave one symbol
unchanged.

For a class of H that has no substitution in G, equation (4) becomes

(7) Dy, = 0.
) I3

This set of equations is not quite sufficient to determine the characteristics of the
remaining classes, additional equations being required. These equations could be
obtained by using examples of the multiplication rule other than (1), but in general
the use of the orthogonal properties of the characters, together with (7), is sufficient to
complete the table.

Example—The table of characters of the symmetric group of order 5! is given on
p. 138.  We will construct the table of characters of the symmetric group of order 6 .
Using equation (6) we may construct the table of characters of the group so far as the
classes with unitary substitutions are concerned. The classes (6), (3?), 2%) and (24)
remain.

The characters corresponding to [6] and [1¢] are known. The self-conjugate character
[321] must be zero for the negative classes. The characteristics of the class (6) are
given by FroBENTUS,T these being alternately + 1 and — 1 for the characters [6], [51],
[412], [313], [21*] and [1°], and zero otherwise.

These results, together with equation (7), now allow us to fill in the tdble completely
if we use five undetermined numbers, a, b, ¢, d, e.

The top half of the table for the last four classes becomes

— — 6 32 23 24
!

[6] 1 1 1 1
[61] —1 -1 —1 -1
[42] 0 a b ¢
[412] 1 1—a 1—0 1—c¢
[37] 0 d —b e
[321] 0 —a—d 0 —c—e

* We use the word ““ character ”’ to represent the complete set of numbers which are the spurs of the
matrices in a given matrix representation of the group. The value of the character for a given operation
or class we call the *“ characteristic ”” of the operation or class. Hitherto, “ character ’ has been used
in both senses.

T ‘ SitzBer. Preuss. Akad. Wiss. Berl.,” p. 516 (1900) ; p. 303 (1901).
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The lower half of the table is the same as the top half with the signs changed for the
negative classes. ‘
From the orthogonal properties of the characters,
Z o ne =0 (o # ¢)
= h/h,. (o =¢")
For the classes (6) and (23) we obtain
1+1+1—b=0.

Hence
b=3.
For the classes (15) and (3?)

l—a—a—d—a-}+1=0.
Hence

d=2— 3a.
For the class (3?)

1414+ a+1—20+a+d2+ (@+ dP + &+ 1 — 20 + a?
+ a1+ 1=061/40=18
18 — 36a + 26a2 = 18.

Hence a = 0 is the only integral root.
Lastly, for the classes (15) and (24)

l—¢c—c—e—c+1=0,
and for the classes (32)and (24)
1+1+1—¢+2+2c+2+2+1—c+14+1=0.

Hence

3+ e=2

— 6e = 6
e=—1
c = 1.

The table may now be completed.

Another fact that may be useful in completing the table, is the following. If two
classes are similar, save that operations of the one class contain a cycle of order p, and the
corresponding operations of the other class leaves the p symbols unaltered, then, p being
prime, the characteristics of the two classes are congruent mod. p.

For example, the characteristics of the class (82) are congruent to the characteristics
of the class (13), and these in turn are congruent to those of the class (1%), mod. 3. In
finding the characters of the symmetric group of order 8!, for example, when these
values of the characters for the first 15 classes have been found, as has been shown,
there remain seven more classes of which one is the class (35). The characteristics
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of this class are congruent to those of the class (135) mod. 3, and congruent to those
of the class (153) mod. 5. Hence we obtain the residues of the characteristics mod. 15,
and this is sufficient to determine the values absolutely, since for this class
% W = 15.

By this method the residues of the characteristics of the class (232) may be obtained
mod. 6, and the absolute characteristics easily deduced.

The proof of this property depends on FROBENIUS’ expression for the characters as
coefficients in the product

S8 oL A (g, v e Ty).
Since S, = 8,7 (mod. p), the expressions for the two classes will be congruent, and

hence the coefficients will be congruent, and these coefficients are the characteristics
themselves.

§ 11. EvaLuaTiON OF THE CHARACTERS OF SYMMETRIC GGROUPS.

Third Method.
If (1) represents the partition of n

n=>r+ A+ ...+ %
then Younc* has shown that y,* is the number of standard tableaux that can be
formed with 2; symbols in the first row, 2, in the second row, etc. If any given order
be assigned to the symbols, then a standard tableau is one in which the symbols in each
row and each column follow the assigned order.
From the definition of MacManoON,T it is clear that this is equivalent to saying that
xo™ is equal to the number of lattice permutations of

T Mg L L

We shall now give another proof of this result, deducing it from FroBexiUs’ formula
for the characters of the symmetric group,

S1%8,%85% . L LA (B, . . 2) =B £ g ML)

We shall then generalize the result for the other classes, and show a further connection
between the characters and lattices, obtaining a third method of evaluating the characters
of the symmetric groups.

From FroBeniUus’ formula, y,* is the coefficient of z,**"~'z,**"~2 . gz » in the
product

Si*A (g, « . .y ).

Now consider A (zy,. .., ,) and multiply the expression » times by S;. At each
step the coeflicient of any term in which two indices are equal, is zero, for a simple
interchange of two of the s will change the sign, and yet leave the term unchanged.

* ‘ Proc. Lond. Math. Soc.,” vol. 31, p. 253 (1930).
T ““ Combinatory Analysis,”” p. 124 (1915).
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Since at each step we multiply by a linear function of the «’s, the order of magnitude
of the indices can only be altered if at some step two indices are equal, and in this case
the coefficient is zero.

Hence at each step we need only consider the coefficients of the terms

-2

TlLt L L X Ty TR L L Xy,

where p; = py = pg = .

We obtain the terms at the next step by multiplying these terms by
(¢, + 22 + .. . + z,), and considering in the product, only those terms which still
satisfy

Wp == Pg = Y3 = .. ..

It is clear that each of the 3, terms a,*"~'z,*"~% . gz in the product
S"A (@, - - .y T)

must be arrived at by this process, and for each of these terms we obtain a lattice

permutation of
P N /R X

Hence y,® is the number of lattice permutations of

xl)\xxz)\z o e+ . annO

Now for a class containing a cycle of order r, S,” is replaced by S,. It is clear that
the order of magnitude of the indices may now be changed without passing through a
stage in which two indices are equal. Consider the term

a a, a. a, : n—1 n-—2
Ty o XYy P Ty (2 T T, ) Uy =%y = .. =

Multiplying by S, we consider that term obtained by multiplying by #,,’. If two
indices are the same, the coefficient will be zero as before, hence we assume them all to
be different. Suppose

U+ N—P> i+ —P—14+1" >+ N0 —p—1L
We obtain the term
... wpap$p+i“?+i+’“i+1wp+1“p+1+1 L wp+i‘_1°‘p+i—1+1xp+i+1“p+i+1 .
- - —p—1 —p—2
X (2" . w, Py T T TP TR L T).

There will be a corresponding term in which the order of the suffixes of the z’s are in
natural order, a negative sign being attached if ¢ is even. This rearranged term is the
term we require.

This may be expressed in terms of lattices as follows.

Consider the product
A (xlﬁ ] xn) S%SMS% o .

VOL. CCXXXIII.—A, S
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corresponding to a class with cycles of orders a,, a,, a;, etc. Consider the term derived
as has been shown above, taking from S,, S,, S, etc., the terms z,*, z,*, 2,*, etc.,
respectively. We obtain a succession of regular graphs, according to MacManoN’s
definition,* by the following steps.

For the term x,*, place one node at the beginning of the b,th row, one above that,
etc., until we place a node at the beginning of the first row. Successive nodes are then
placed in the first row until ¢; nodes have been placed.

For the next step @, nodes may be placed in the byth row, if this leaves the graph
regular, ¢.e., if the number of nodes in this row is not brought in excess of the number
in the preceding row. Otherwise add nodes to the byth row until the number of nodes
in this row exceeds by one the number of nodes in the preceding row. Then add nodes
to the preceding row until the number exceeds by one the number in the preceding row,
continuing thus until @, nodes have been placed. When the last node is added the
graph must be regular.

This procedure is repeated for the succeeding steps. If at any step nodes are added
to an even number of rows, a minus sign is attached.

For each graph that can be built in this way there is a corresponding term in

A (@ .o ) Su S, S, - - -

and 4 1 is contributed to the corresponding character.

Example—We obtain the values of all the characteristics for that class of the sym-
metric group of order 7! which has two cycles of order 3, one symbol being unaltered.
We build graphs from the product S;S,8,. Instead of nodes, to make the composition
clear in one graph, we use a 1, 2 or 8, according as the node would be added at the first,
second or third step. We obtain the following graphs :

1112223 111222 1113 111

3 222 222
3
1113 111 111 111
2 2 223 2 2 2 2
2 2 23 2
3

1113 111 111
2 23 2
2 2 2
2 2 2

3

* Op. cit., p. 124 (1915). A regular graph would be the same as a Youne tableau with nodes in the place
of symbols,
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112223 11222 11222

1 13 1
3
1123 112 113 11
122 122 12 12
3 22 22
3
113 11 11 12223 1222 1222
1 13 1 1 13 1
2 2 2 1 1 1
2 2 2 3
2 2 2
3
1223 122 122 122
12 123 12 12
1 1 13 1
3
123 12 13 1
12 12 1 1
2 12 1 1
3 2 2
2 2
2 2
3

A bar has been placed over those graphs which contribute — 1.

1t follows that for this class the values of the characters are

o 61 52 512 13)
Xp( ) 1, Xp( ) 0, Xp(a ) ) 1, Xp( ) 0’ Xp( ) 2,
2. 3 2 2
XP(421) — 1, Xp(s 1) — 0, Xp(41 ) — 2, Xp(32 ) — 0, Xp(321 ) — 1,
3 4 2438 5 7
xp(z 1) — 2, Xp(31 ) — 0, xp(z 19) — 1, Xp(zl ) =0, Xp(l ) — 1.

This method may be found useful if, in the computation of tables of characters by the
second method, one of the residual classes presents exceptional difficulty. Again, if the
characteristic of a given class is required, rather than the complete table of characters,
the method is particularly useful. _

For example, for the symmetric group of order 20! we shall find the characteristic

s2
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x!">>® of the class of substitutions containing a cycle of order 15, two cycles of order 2,
one symbol being unchanged. The possible graphs are

1111111111111114
2 2
3

V]

1111111111111114

1111111111122 4

[

1111111111133 4

Hence for this class
0P =141 —1—1=0.

§ 12. RELATIONS BETWEEN IMMANANTS DEDUCED FROM RELATIONS BETWEEN
S-FuNCTIONS.

We use the notation (1°2°37. . .) to denote the class ¢ of products Py corresponding
to permutations composed of « cycles of period 1, 8 cycles of period 2, y cycles of period 3,
and so on. The number of elements in this class is evidently

n!
1288 ...l Blyl .

which is precisely the coefficient of the term 8,°S,°S,” . . . in the corresponding S-function.
Hence, if in the development of an S-function

abqc — n! ad 8
w2 =B g, e SO

we replace S,°S,°8;7 .. . by 1°2°87 . .. ! B! y! ... (1°2°87 .. .) we get
n! Xy, (1937 . )
which is equal to

n ! [192%3° . . .],

the square bracket denoting the immanant.
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Conversely, from the expansion of an immanant in classes we can deduce the expansion
of an S-function in S,’s.

We shall now prove that vn a relation between S-functions we may replace the S-functions by
the corresponding vmmanants if at the same time we replace the multiplication sign by a
surtable sign of summation.

It will be sufficient to prove the result true for the product of two S-functions.

Let '
n! S=8"S. . ..

R Sk S M P I B

n! {1953 . } =3y

m 8,58,h8,0 . ..
P 1egh3n . ag ! byl Ggl ...

ml{1%9%3n ) =3 ¢
thus
(1%98gn | | } {1283 ., }

Slal-l~a,S2b1+bzsscl+c2 L.

=X , .
obe Taragrigrn g Ta, T 5.1 bal o1 6]

By the previous work, if in this we replace

Sla1+a,szbl+b,ssc,+c, .

by
10+omghrbgota (g 4 ay) | (By + by) ! . . . (Loreghrhgare ),

then the result will be the same as if in the expression of the right-hand side as a sum of
S-functions of degree (n + m) we had replaced the S-functions by the corresponding
Immanants.

The result is

(al+a2)!(bl+b2)!(cl+02)!"’ 1+ @20b, +b,9¢,+ ¢,
Bt T T B 1 Gyl G L ogl .. L 2 ). e (9)

Next consider
5 [1m8gn ., J[1%2%8% . | ]

where the 3 means that the immanants are taken from complementary coaxial principal
minors of the matrix of degree (n + m), of degrees n and m respectively and the sum
taken. The number of elements of the form (1“*®2n+%:3%+% | ) arising from sums of
products of elements in (14273 . ..) (1%2%3>. ..) is

(n 4+ m)! “n! m!
n! m! 19tagh+bgata g 1 g b 1 byl ! cy! ..

Now every element of the class (1%+®%2%+%3%*% ) appears equally often in this
product and it contains
(n+ m)!
1arahrbgata - (ap + ap) ! (by + by) ! (e +co)! ..
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terms. It follows that the class (1%t“2b+hga+e:, | ) occurs exactly

(@ +a)! (b +0a)! (e +c)! ..

" times.
ay ! ay ! b byl le,! L.

Hence, from (2) we see that the result of the substitution on the left-hand side is to
replace the product of S-functions

{1928:3% | ) {12587 . . }
by
= [1%258% . J[142%3% . . ]
summed over all possible (n -4 m)!/n! m! complementary sets of principal coaxial
minors of degrees # and m in the matrix of degree (n + m) ; and on the right-hand side
to replace a linear combination of S-functions by the same linear combination of the
corresponding immanants.
Thus from

{8} (17} = {41} + {313,
T [3][1*] = [41] -+ [31%],

the summation being taken over the complementary sets of coaxial minors of degrees
3 and 2 in the matrix of degree 5. A
Some particular cases of this theorem are known* e.g., from the relation

follows

Gy — by@y 4 hotty — hsay + by =0

we immediately deduce the relation between the corresponding determinants and
permanents, viz. i

)= e B+ 20D - =T+ (hrd) -0

§ 13. AppricaTION TO COMPUTATION OF CHARACTERS.

A term such as 8,°S,°S;” . . . is expressible as a linear function of S-functions, the
coefficients being the characteristics of the class (1°2°37 . ..). These may be calculated
very simply if we express S,%S,’S,” . . . as the product of two similar functions, each
of which can be expressed as a linear function of S-functions of lower degree. The use
of the multiplication theorem then gives the required characters. The simplest case
is that in which we write the product as

Sl . Sla——ISZBSSV ..

* MacManox, ¢ J. Lond. Math. Soc.,” p. 273 (1922).
+ Muir, “ Theory of Determinants,”” vol. 4, p. 459 (1923).
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This is in effect the method on p. 127 ; it enables us to compute the characteristics of any
class containing a unitary substitution very readily.
For example, we can compute the characteristics of (123).

828, = 8, . 8,8,
— L[4 — @3+ 9]
— (5} + {41} — (32} — (221} + @19} + (13},

and the characteristics are therefore
L, 1, —1, 0, —1, 1, 1.

(See Table on p. 128.)

In this way the characteristics of any class can easily be obtained.

Similar considerations enable us to deduce a number of identities between immanants,
including the expression of an immanant as a polynomial in determinants.

§ 14. CONCLUSION.

The methods of this paper may be applied to many other problems. For example,
the structure of a group and many of the properties of its sub-groups may be read off
from the character tables. Also, although we have restricted this investigation to the
symmetric group, there is a corresponding theory for any group leading to a development
of the theory having applications to the theory of equations. Further, the immanants
of special matrices can be used to give results relating to the numbers of BeErNouLLi,
StirLING and EULER.

Finally, we would point out that the rational fractions used by Pap# and HADAMARD
have coefficients which can be expressed in terms of S-functions, which suggests that the
study of the essential singularities of functions can be carried out by means of rational
fractions corresponding to the self-conjugate partitions.

-§15. TaBLES OF CHARACTERS OF THE SYMMETRIC GROUPS.

Degree 2. Degree 3.
Class 12 2 Class 13 12 3
Order 1 1 Order 1 3 2
[2] 1 1 [3] 1 1 1
[17] 1 -1 *[21] 2 0 —1
[17] 1 —1 1

* Denotes a self-associated partition and character.
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§ 16 Summary.

MacMauon has pointed out the close analogy which exists between the threefold
algebra of the symmetric functions «,, , and S, and the theory of determinants, per-
manents and cycles of substitutions of the symmetric group. In this paper we trace
the analogy to its source by fixing attention on the characters of the irreducible repre-
sentations of the symmetric group, as the centre of the whole theory. By this means
divers theories of combinatory analysis and algebra are seen to be merely different
aspects of the same theory. For the symmetric group of order n! the characters are
all integers, and we associate with each partition of » both a character of the group
and a cycle of substitutions, and new functions termed immanants, are defined
corresponding to each partition of n. Of these the permanent of a matrix of degree n
corresponds to the partition (n) whilst the determinant corresponds to the partition (17),
the other immanants filling the gap between. There is thus a theory of immanants
which includes that of determinants as a very special case.

In this paper immanants are used to develop simple methods which suffice for the
calculation of characters of symmetric groups of orders up to, say, 20 !. Incidentally,
it is shown that most of the existing tables of symmetric functions may be replaced by
the tables of characters. In particular those of Kostka are shown to be merely simple
linear combinations of the characters. Tables of characters of symmetric groups of
orders up to 9! are calculated.
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